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NOMENCLATURE 

C, constant; 
f ,  stream function; 
i, variable defined to be zero for plane flow and 

one for axisymmetric flow; 
K, constant; 
L, characteristic length of the body; 
p, Laplace transform variable; 
Pr, Prandtl number; 
t, time; 
T, temperature; 
Z~,,  temperature at infinity; 
Tw, temperature on the surface; 
u, velocity in x direction; 
up, potential inviscid velocity on the surface; 
v, velocity in y direction; 
x, coordinate along the body; 
y, coordinate normal to the body. 

Greek symbols 
~, thermal diffusivity; 
tl, variable defined by (7); 
0, nondimensional temperature; 
9, nondimensional temperature; 
~, Laplace transform of ~; 
v, kinematic viscosity; 
¢, variable defined by (15); 
z, nondimensional time; 
~, stream function. 

INTRODUCTION 

TItE PRESENT note is concerned with unsteady thermal 
boundary layer in the impulsive stagnation flow. Watkins 
[ 1] recently considered the more general problem of impul- 
sive Falkner-Skan flows and obtained numerical solutions 
for moderate values of Prandtl number for the situation in 
which thermal boundary layer is produced by sudden 
imposition of a constant temperature difference between the 
body and the fluid as the impulsive motion is started. In 
the present note, analytical solutions for impulsive stag- 
nation flow are obtained for two situations of thermal con- 
dition on the surface; one is the same situation as that 
treated by Watkins, that is, step change in wall temperature, 
and the other is the case of step change in wall heat flux. 
For the latter case, no solutions have been obtained up to 
now as far as the present writer knows. Present analysis is 
restricted only to low Prandtl number fluids such as liquid 
metals, which will be useful because of its possible appli- 
cation in the nuclear field. 

GOVERNING EQUATIONS 

Consider the flow field around a two-dimensional or 
rotationally symmetrical body which is set in a steady motion 
impulsively. In the neighbourhood of the front stagnation 
point, the inviscid potential flow described by 

u~ = K x ,  (1) 

where K is constant, is established instantaneously with the 
impulsive motion. 

In the boundary layer, introducing the following variables 

r I = y ( 2 i K / v )  1:2, r • 2 i K t ,  [ {2l 

Ip = (vK/2 i ) t "2(x /L) ix f  lr, tl): 

where ~/, is the stream function defined by 

u = ( L / x ) ' ( & f i / ( ? y ) ,  i 
i 3~ 

c = - (L/'x)i(~b/~ >c), .! 

L being the characteristic length of the body, the governing 
equation for the velocity can be written as 

t](' + j " " + f f " + 2  ~(1 _j--,2) = 0 i4 
?r 

with boundary conditions 

r ~ 0 f = f '  = 0, 

,->0 . H : l ' : °  for,=0.~ ,5t 
\ f ' - ,  t a s  ~l --' : '- ,) 

where prime denotes differentiation with respect to t 1. We 
assume that the body and the fluid are initially (t ~< 0) at the 
same temperature and, as the impulsive motion is started, a 
constant temperature difference between the body and the 
fluid or a constant heat flux {= kC) through the wall is 
suddenly imposed. The governing equations and the bound- 
ary conditions for the temperature field then can be 
written as 

~0 (20 (0 
- - - . .... , (6) Pr ~r - ~rl 2 + P r f  ;)1 

and r ~<0 0 = 0  ITa) 

> 0 (a) for step change in wall temperature 

0 =  1 at / / = 0  ( 17b) 
0-- ,0  a s ~ - + 7 _ ( "  

(b) for step change in wall flux 

~0/~?r/= - I  at 1 1 = 0  i (?c) 

respectively, where 

( T -  T~,)/(I~,.- T,  ) iSa) 

~for  step change in wall temperature 
eJ = ~ ( T -  FD/C(v /2~KII '  2 {gb) 

[ f o r  step change in wall flux. 

ASYMPTOTIC SOLUTIONS FOR Pr ~ 0 

We shall now proceed to obtain the asymptotic solution 
of (6) for Pr-+O. When Pr is small, the ratio of the thickness 
of thermal boundary layer to that of momentum layer is 
very large and therefore the velocity field in the thermal 
boundary layer may be approximated by its asymptotic 
expansion for large ~/: 

f ~ ~1 + fl(~t, i9! 

where fi is a function of z. Substituting (9) into (6). we have 

&') ~23 ?5 
("C ~ 2  F [ ~ + f l ( z ) p r > 2 ] , c ' 5 '  ~1(~ 
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where 

= Prl/2q, ~t(z, ~) = O(z, q). (11) 

Since we consider the limit of Pr --* O, the second term in the 
parentheses may be neglected and the equation (10) becomes ? 

g. 

80 ~2~ 08 (10a) "~ 

O, 

Defining the Laplace transform of O(z,~) in the usual 
manner; i.e. ~- I 

= e-V%a(z, Odz, (12) o., 

(10a) becomes 
#2q &q 

+ ~ ~ - p ~ q  = 0, (13) 8~2 

with boundary conditions 

(a) for step change in wall temperature 

= 1/p at ~ = 0 

,q--, 0 as ~-- ,  oo, 

(b) for step change in wall flux 

0~/~8__.0_ = - 1/Prl/2P asat ¢~._.= O. } (14b) 

The solution of (13) satisfying the boundary condition at 
infinity is [2] 

~V { p 1 ~2,\ ~F  { p - 1  3 ,~2,\'-] 

2(P-I'/2F(P-[-I'] I 
\ 2 ] . ]  

(14a) 

0 5 )  

where A is an integration constant and xFx is the confluent 
hypergeometric function. The boundary conditions on the 
surface determine A as 

A =  2V/2F ( P ~ ) / p  (16a) 

for step change in wall temperature and as 

A =  2(v- '):2F@-~-)/Pr' /2p (16b) 

for step change in wall flux. 
For the case of step change in wall temperature, the 

temperature gradient at the surface can be obtained by 
taking inverse of (&q/00~ = o, The result is [3] 

( ~ f )  '/2 1 (17) 
- (80/8q)'1= ° = (1 --e-2r)  1/2" 

For z --* 0, (17) becomes 

- ( a 0 / a n ) . =  o ~ (Prlrcz) I/2. (18) 

This asymptotic behaviour is in agreement with the tem- 
perature gradient obtained from the Rayleigh's solution 

0 = erfc[q/(4z/Pr)l/2], (19) 

~ s e n f ,  Pr=O 

Wofkins, Pr = 07 
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FIG. 1. Heat-transfer variation for step change in wall 
temperature. 
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Fro. 2. Wall temperature variation for step change in \x all 

flux. 

which is valid for small r. For r - ,  ~. on the other hand. 
(17) becomes 

-(80/~q),=o ~ (2Pr ~z) 1 2. t20) 

which is in agreement with the previousl) obtained stead) 
state result for Pr-,O. Figure l shox~s the heat-transfer 
result plotted as a function of time. For comparison, the 
result by Watkins for Pr = 0.7 and that from Ra)leigh's 
solution are also shown in the figure. 

For the case of step change in wall flux. the temperature 
at the surface can be obtained b) taking inverse of (~)~=o 
as follows [3]. 

(O),=o =(2/Pmr)12[rr/2-sin-a(e-~)]. (21) 

This relation is shown graphically in Fig. 2. 
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